example.fashionMNIST.data_preprocessing package
Submodules
example.fashionMNIST.data_preprocessing.MNIST_dataset module
- load_dataset_FashionMNIST_with_standardization(dataset_path, valid_ratio=0.2, num_threads=4, batch_size=128)
Load the FashionMNIST dataset with standardize data
Tip
For example with a valid_ratio = 0.2, we going to use 80%/20% split for train/valid.
- Parameters:
dataset_path (str.) – Path where the dataset will be read if already present, downloaded else.
valid_ratio (float.) – Percentage of the FashionMNIST train dataset that will be used or the test process (validation data). Between 0.0 and 1.0.
num_threads (int.) – Number of threads used for this task.
batch_size (int.) – Size of the batchs.
- Returns:
a tuple of three dataloader: train, validation and test.
- Return type:
Tuple of three torch.utils.data.DataLoader.
example.fashionMNIST.data_preprocessing.data_utils module
- class DatasetTransformer(base_dataset, transform)
Wrapper of the pytorch Dataset class. Add a transformation process to apply to each sample during the data loading.
- compute_mean_std(loader)
Compute the mean over minibatches.
- Parameters:
loader (torch.utils.data.DataLoader.) – Dataloader on which to iterate.