example.fashionMNIST.training package
Submodules
example.fashionMNIST.training.evaluation module
- test(model, loader, f_loss, device)
Test a model by iterating over the loader.
- Parameters:
model (torch.nn.Module.) – A torch.nn.Module object.
loader (torch.utils.data.DataLoader.) – A torch.utils.data.DataLoader.
f_loss (torch.nn.Module.) – The loss function, i.e. a loss Module.
device (torch.device.) – The device to use for computation.
- Returns:
A tuple with the mean loss and mean accuracy.
- Return type:
tuple of two floats.
example.fashionMNIST.training.train module
- train(model, loader, f_loss, optimizer, device)
Train a model for one epoch, iterating over the loader using the f_loss to compute the loss and the optimizer to update the parameters of the model.
- Parameters:
model (torch.nn.Module.) – A torch.nn.Module object.
loader (torch.utils.data.DataLoader.) – A torch.utils.data.DataLoader.
f_loss (torch.nn.Module.) – The loss function, i.e. a loss Module.
optimizer (torch.optim.) – Optimisation algorithm used for the gradient retropropagation.
device (torch.device.) – The device to use for computation.
- Returns:
None.